Training the

raP

Antonia Rowlinson University of Amsterdam

Thanks to: J. Swinbank, T. Staley, B. Scheers, G. Molenaar, A. Stewart, J. Broderick, A. van der Horst, D. Carbone, Y. Cendes, R. Wijers, R. Fender

European Research Council

ASTRONOMICAL INSTITUTE ANTON PANNEKOEK

The Transients Pipeline (TraP):

Antonia Rowlinson

University of Amsterdam

The Transients Pipeline (TraP):

Antonia Rowlinson

University of Amsterdam

The Transients Pipeline (TraP):

Antonia Rowlinson

University of Amsterdam

Transient parameters:

S = Unbiased standard deviation I = Integrated flux N = Number of datapoints $\omega = \frac{1}{e^2} = \frac{1}{(\text{Flux error})^2}$

Antonia Rowlinson

University of Amsterdam

Transient parameters:

- S = Unbiased standard deviation I = Integrated flux N = Number of datapoints $\omega = \frac{1}{e^2} = \frac{1}{(\text{Flux error})^2}$
- Weighted χ^2 of a fit to a constant flux:

$$\eta_{\nu} = \frac{N}{N-1} \left(\frac{\overline{\omega I^2}}{\overline{\omega I^2}} - \frac{\overline{\omega I^2}}{\overline{\omega}} \right)$$

Antonia Rowlinson

University of Amsterdam

Transient parameters:

S = Unbiased standard deviation I = Integrated flux N = Number of datapoints $\omega = \frac{1}{e^2} = \frac{1}{(\text{Flux error})^2}$

$$\eta_{\nu} = \frac{N}{N-1} \left(\frac{\overline{\omega I^2}}{\overline{\omega}} - \frac{\overline{\omega I}^2}{\overline{\omega}} \right)$$

Variability index:

$$V_{\nu} = \begin{pmatrix} s \\ \overline{\overline{I}} \end{pmatrix}$$

• High
$$\eta$$
 • Low η
20
15
10
5
0
1
2
3
4
5
6
Image

Antonia Rowlinson

University of Amsterdam

The Radio Sky Monitor:

24 hour observation, once per month for 6 months
4 frequencies (124, 142, 156 and 185 MHz)
2x11min consecutive snapshots per pointing direction

Credit: R. Breton

Antonia Rowlinson

University of Amsterdam

The Radio Sky Monitor:

0

1000

Screenshot from Banana G. Molenaar & TraP developers

Highcharts.com

3000

Credit: R. Breton

Antonia Rowlinson

University of Amsterdam

<u>b.a.rowlinson@uva.nl</u>

2500

2000

Image

149 MHz 🔳 156 MHz 📕 185 MHz 📕 124 MHz

Credit: A. Stewart, J. Broderick, A.Rowlinson

Typical RMS noise: $23.6^{+7.8}_{-5.8}$ mJy

<u>Duva.nl</u>

LBA

Antonia

Credit: R.

University of Amsterdam

University of Amsterdam

University of Amsterdam

University of Amsterdam

University of Amsterdam

Simulations:

- 4400 images
- 440 unique
 transient
 sources
- 55 different combinations of max flux and quiescent flux for each type

Antonia Rowlinson

University of Amsterdam

Simulations:

Antonia Rowlinson

University of Amsterdam

Choosing thresholds:

- Trial different thresholds to classify known variable and stable sources
- Count the sources falling in these categories:
 - TP:True Positive
 - FN: False Negative
 - FP: False Positive
- Calculate precision and recall
- Choose the sigma thresholds that provide required precision and recall

<u>b.a.rowlinson@uva.nl</u>

Antonia Rowlinson

University of Amsterdam

University of Amsterdam

University of Amsterdam

Candidate Transient:

Lightcurve for transient #5531 \equiv start date Unknown 20 z I 17.5 z 2 1 1 15 1 Flux (Jy) I 1 12.5 т 10 1 7.5 Mar 1 00:00 Apr 1 00:00 May 1 00:00 Jun 1 00:00 Jul 1 00:00 124 MHz 149 MHz 156 MHz 185 MHz trigger Highcharts.com

Plots from Banana G. Molenaar & TraP developers

Antonia Rowlinson

University of Amsterdam

Candidate Transient:

Plots from Banana G. Molenaar & TraP developers

Antonia Rowlinson

University of Amsterdam

Can we do better?

- Logistic Regression
- Linearly separate in multiple dimensional space
- Use multiple features for each source:
 - Weighted reduced χ^2 (η_{ν})
 - \odot Variability index (V_v)
 - Maximum flux
 - Maximum flux ratio

Antonia Rowlinson

University of Amsterdam

<u>b.a.rowlinson@uva.nl</u>

Conclusions:

- The Transients Pipeline (TraP) is performing well and we can confidently detect variable sources in the Radio Sky Monitor dataset if their fluxes are >0.6 Jy and max flux / average >2
- Tools in development to automatically train the TraP parameters

https://github.com/AntoniaR/scripts/tree/machine_learning/TraP_trans_tools

 Image reliability is essential. Work is ongoing to reduce calibration and imaging issues to prevent false transients.
 Scripts to train TraP quality control settings available:

https://github.com/transientskp/scripts/tree/master/TraP_QC_diagnostics